Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(10): 2158-2170, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341539

RESUMO

We used yellow perch (Perca flavescens) captured at four sites differing in legacy industrial pollution in the Lake St. Clair-Detroit River system to evaluate the lingering sublethal effects of industrial pollution. We emphasized bioindicators of direct (toxicity) and indirect (chronic stress, impoverished food web) effects on somatic and organ-specific growth (brain, gut, liver, heart ventricle, gonad). Our results show that higher sediment levels of industrial contaminants at the most downstream Detroit River site (Trenton Channel) are associated with increased perch liver detoxification activity and liver size, reduced brain size, and reduced scale cortisol content. Trenton Channel also displayed food web disruption, where adult perch occupied lower trophic positions than forage fish. Somatic growth and relative gut size were lower in perch sampled at the reference site in Lake St. Clair (Mitchell's Bay), possibly because of increased competition for resources. Models used to determine the factors contributing to site differences in organ growth suggest that the lingering effects of industrial pollution are best explained by trophic disruption. Thus, bioindicators of fish trophic ecology may prove advantageous to assess the health of aquatic ecosystems. Environ Toxicol Chem 2023;42:2158-2170. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Percas , Poluentes Químicos da Água , Animais , Biomarcadores Ambientais , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rios
2.
Toxicol Sci ; 193(1): 80-89, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36916757

RESUMO

Harmful algal blooms (HABs) release toxic compounds in water and are increasing in frequency worldwide. The neurotoxin ß-methylamino-l-alanine (BMAA) is released by HABs and has garnered much attention over the past 20 years due to its association with human neurodegenerative disorders, but its effects on wildlife are still largely unknown. This study characterized the effects of chronic exposure to environmentally relevant concentrations of BMAA on the behavior and brain size of developing zebrafish (Danio rerio). Zebrafish were continuously exposed to 0, 1, 10, or 100 µg/l waterborne BMAA between 0- and 5-days postfertilization (dpf) before the onset of exogenous feeding. At 5 dpf, locomotion and responses to vibrational and visual stimuli were assessed. Following behavioral testing, larvae body and brain size were measured. Survival between 0 and 5 dpf did not differ between treatments. Moreover, BMAA exposure did not affect thigmotaxis, startle response magnitude, habituation to repeated presentation of vibrational startling stimuli, or relative brain size. A moderate increase in overall activity was observed in larvae exposed to 10 µg/l BMAA under light, but this effect was not seen in dark conditions, indicating that visual processing may have been affected by chronic BMAA exposure. Thus, passive continuous exposure to environmentally relevant concentrations of BMAA prior to first feeding in zebrafish did not affect survival or selected measures used to represent brain development, anxiety, and motor reflexes, but a limited light-dependent effect on locomotion suggests targeted neurotoxicity within the visual system.


Assuntos
Diamino Aminoácidos , Peixe-Zebra , Animais , Humanos , Larva , Tamanho do Órgão , Toxinas de Cianobactérias , Diamino Aminoácidos/toxicidade
3.
J Evol Biol ; 35(10): 1363-1377, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073994

RESUMO

Mechanisms that generate brain size variation and the consequences of such variation on ecological performance are poorly understood in most natural animal populations. We use a reciprocal-transplant common garden experiment and foraging performance trials to test for brain size plasticity and the functional consequences of brain size variation in Pumpkinseed sunfish (Lepomis gibbosus) ecotypes that have diverged between nearshore littoral and offshore pelagic lake habitats. Different age-classes of wild-caught juveniles from both habitats were exposed for 6 months to treatments that mimicked littoral and pelagic foraging. Plastic responses in oral jaw size suggested that treatments mimicked natural habitat-specific foraging conditions. Plastic brain size responses to foraging manipulations differed between ecotypes, as only pelagic sourced fish showed brain size plasticity. Only pelagic juveniles under 1 year-old expressed this plastic response, suggesting that plastic brain size responses decline with age and so may be irreversible. Finally, larger brain size was associated with enhanced foraging performance on live benthic but not pelagic prey, providing the first experimental evidence of a relationship between brain size and prey-specific foraging performance in fishes. The recent post-glacial origin of these ecotypes suggests that brain size plasticity can rapidly evolve and diverge in fish under contrasting ecological conditions.


Assuntos
Ecótipo , Perciformes , Adaptação Fisiológica , Animais , Peixes , Tamanho do Órgão , Perciformes/fisiologia
4.
Zoology (Jena) ; 152: 126011, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367700

RESUMO

Early development is highly susceptible to environmental influence. We evaluated the role of larval visual environment on brain morphology plasticity in late larval and juvenile stages of Bombina orientalis, an anuran amphibian changing from an aquatic to a terrestrial habitat after metamorphosis. Manipulation of the visual environment was achieved by rearing larvae in normal and darkened water. The juveniles were exposed to normal lighting conditions after metamorphosis, allowing to assess if plastic effects persisted or emerged after metamorphosis. The darkness treatment accelerated development before slowing it down substantially, allowing controls to metamorphose earlier. Although larvae reared in darkened water had the same relative brain size as controls by the end of the larval period, juveniles that had been reared in darkened water as larvae had brains that were 14.4% smaller than juveniles that had been reared under control conditions. Conversely, relative telencephalon size was 6.7% larger in juveniles previously reared in darkened water compared with controls, again with no effect of darkened water seen by the end of the larval period. Unlike the latent effects seen on whole brain and telencephalon size, relative size of the optic tectum was significantly smaller in both larvae and juveniles exposed to the darkened water treatment. Therefore, the effects of visual restriction on juvenile brain form were a combination of latent (whole brain and telencephalon) and carry-over (optic tectum) developmental effects.


Assuntos
Anuros , Metamorfose Biológica , Animais , Encéfalo , Ecossistema , Larva
5.
Anim Cogn ; 25(2): 359-368, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34468877

RESUMO

Recovery-from-extinction effects in which a conditioned response returns after extinction have been shown in mammals, birds and fish. Thus, these effects appear to be conserved among vertebrates; however, they have yet to be investigated in amphibians. Using prey catching conditioning in the fire-bellied toad (Bombina orientalis), we tested if renewal and reinstatement occurred after extinction when subjects were respectively re-exposed to the context or reinforcer used during conditioning. For renewal, a different context was used during extinction and thus renewal tests assessed if external contextual cues associated during conditioning stimulated prey catching performance. For reinstatement, the reinforcer withheld during extinction was simply delivered again prior to a test assessing if internal cues associated with recent prey consumption stimulated prey catching performance. Conditioning followed a fixed ratio 5 schedule of reinforcement, where five attempts to capture a cricket stimulus displayed on a computer screen were reinforced by delivery of a single live cricket. Performance was measured as the time to reach five prey catching attempts. A significant improvement in prey catching performance during conditioning followed by deterioration with extinction was seen in the experiments. Upon return to the context used for conditioning after extinction, toads showed a renewal effect whereby they displayed faster performance during testing compared to the end of extinction. Conversely, toads showed no reinstatement effect because pre-feeding of a cricket did not influence performance during the test that followed extinction. Reinstatement could have been lost in amphibian phylogeny due to secondary simplification of the nervous system.


Assuntos
Condicionamento Clássico , Extinção Psicológica , Animais , Anuros/fisiologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Humanos , Mamíferos , Reforço Psicológico
6.
Ecol Evol ; 11(21): 14950-14959, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765152

RESUMO

Teleost fishes occupy a range of ecosystem, and habitat types subject to large seasonal fluctuations. Temperate fishes, in particular, survive large seasonal shifts in temperature, light availability, and access to certain habitats. Mobile species such as lake trout (Salvelinus namaycush) can behaviorally respond to seasonal variation by shifting their habitat deeper and further offshore in response to warmer surface water temperatures during the summer. During cooler seasons, the use of more structurally complex nearshore zones by lake trout could increase cognitive demands and potentially result in a larger relative brain size during those periods. Yet, there is limited understanding of how such behavioral responses to a seasonally shifting environment might shape, or be shaped by, the nervous system.Here, we quantified variation in relative brain size and the size of five externally visible brain regions in lake trout, across six consecutive seasons in two different lakes. Acoustic telemetry data from one of our study lakes were collected during the study period from a different subset of individuals and used to infer relationships between brain size and seasonal behaviors (habitat use and movement rate).Our results indicated that lake trout relative brain size was larger in the fall and winter compared with the spring and summer in both lakes. Larger brains coincided with increased use of nearshore habitats and increased horizontal movement rates in the fall and winter based on acoustic telemetry. The telencephalon followed the same pattern as whole brain size, while the other brain regions (cerebellum, optic tectum, olfactory bulbs, and hypothalamus) were only smaller in the spring.These findings provide evidence that flexibility in brain size could underpin shifts in behavior, which could potentially subserve functions associated with differential habitat use during cold and warm seasons and allow fish to succeed in seasonally variable environments.

7.
Neurobiol Learn Mem ; 184: 107502, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391934

RESUMO

Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.


Assuntos
Anuros/fisiologia , Encéfalo/metabolismo , Extinção Psicológica/fisiologia , Transcriptoma , Animais , Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/fisiologia
8.
Front Neurosci ; 15: 665017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447292

RESUMO

OBJECTIVE: To characterize microstructural white matter changes related to relapsing-remitting multiple sclerosis using advanced diffusion MRI modeling and tractography. The association between imaging data and patient's cognitive performance, fatigue severity and depressive symptoms is also explored. METHODS: In this cross-sectional study, 24 relapsing-remitting multiple sclerosis patients and 11 healthy controls were compared using high angular resolution diffusion imaging (HARDI). The imaging method includes a multi-shell scheme, free water correction to obtain tissue-specific measurements, probabilistic tracking algorithm robust to crossing fibers and white matter lesions, automatic streamlines and bundle dissection and tract-profiling with tractometry. The neuropsychological evaluation included the Symbol Digit Modalities Test, Paced Auditory Serial Addition Test, Modified Fatigue Impact Scale and Beck Depression Inventory-II. RESULTS: Bundle-wise analysis by tractometry revealed a difference between patients and controls for 11 of the 14 preselected white matter bundles. In patients, free water corrected fractional anisotropy was significantly reduced while radial and mean diffusivities were increased, consistent with diffuse demyelination. The fornix and left inferior fronto-occipital fasciculus exhibited a higher free water fraction. Eight bundles showed an increase in total apparent fiber density and four bundles had a higher number of fiber orientations, suggesting axonal swelling and increased organization complexity, respectively. In the association study, depressive symptoms were associated with diffusion abnormalities in the right superior longitudinal fasciculus. CONCLUSION: Tissue-specific diffusion measures showed abnormalities along multiple cerebral white matter bundles in patients with relapsing-remitting multiple sclerosis. The proposed methodology combines free-water imaging, advanced bundle dissection and tractometry, which is a novel approach to investigate cerebral pathology in multiple sclerosis. It opens a new window of use for HARDI-derived measures and free water corrected diffusion measures. Advanced diffusion MRI provides a better insight into cerebral white matter changes in relapsing-remitting multiple sclerosis, namely diffuse demyelination, edema and increased fiber density and complexity.

9.
J Evol Biol ; 34(4): 639-652, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484022

RESUMO

Habitats can select for specialized phenotypic characteristics in animals. However, the consistency of evolutionary responses to particular environmental conditions remains difficult to predict. One trait of great ecological importance is brain form, which is expected to vary between habitats that differ in their cognitive requirements. Here, we compared divergence in brain form and oral jaw size across a common littoral-pelagic ecological axis in two sunfishes at both the intraspecific and interspecific levels. Brain form differed between habitats at every level of comparison; however, divergence was inconsistent, despite consistent differences in oral jaw size. Pumpkinseed and bluegill species differed in cerebellum, optic tectum and olfactory bulb size. These differences are consistent with a historical ecological divergence because they did not manifest between littoral and pelagic ecotypes within either species, suggesting constraints on changes to these regions over short evolutionary time scales. There were also differences in brain form between conspecific ecotypes, but they were inconsistent between species. Littoral pumpkinseed had larger brains than their pelagic counterpart, and littoral bluegill had smaller telencephalons than their pelagic counterpart. Inconsistent brain form divergence between conspecific ecotypes of pumpkinseed and bluegill sharing a common littoral-pelagic habitat axis suggests that contemporary ecological conditions and historic evolutionary context interact to influence evolutionary changes in brain form in fishes.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Ecossistema , Arcada Osseodentária/anatomia & histologia , Perciformes/anatomia & histologia , Animais , Perciformes/genética
10.
Evol Dev ; 22(4): 312-322, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32160385

RESUMO

A functional relationship between relative brain size and cognitive performance has been hypothesized. However, the influence of ontogenetic niche shifts on cognitive performance is not well understood. Increases in body size can affect niche use but distinguishing nonecologically relevant brain development from effects associated with ecology is difficult. If survival is enhanced by functional changes in ecocognitive performance over ontogeny, then brain size development should track ontogenetic shifts in ecology. We control for nonecologically relevant brain size development by comparing brain growth between two ecotypes of Pumpkinseed sunfish whose ecologies diverge over ontogeny from a shared juvenile niche. Brain size differs between ecotypes from their birth year onwards even though their foraging ecology appears to diverge at age 3. This finding suggests that the eco-cognitive requirements of adult niches shape early life brain growth more than the requirements of juvenile ecology.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ecossistema , Ecótipo , Perciformes/fisiologia , Animais , Tamanho do Órgão , Perciformes/crescimento & desenvolvimento
11.
Conserv Physiol ; 7(1): coz052, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620290

RESUMO

The development of chronic stress indicators for fish is of great interest, but appropriate non-invasive methods are lagging those used in terrestrial vertebrates. Here, we explore the possibility that levels of the stress hormone cortisol in scales could be used as a chronic stress indicator. Three experiments were conducted to assess the temporal profiles of cortisol rise and fall in plasma and scales of goldfish (Carassius auratus) in response to stressors of varying intensity and duration. Results show that a single acute air emersion stressor does not influence scale cortisol content. In contrast, relative to plasma levels, the fall in scale cortisol content following a high-dose cortisol implant is delayed by at least 8 days, and the rise and fall in scale cortisol content in response to unpredictable chronic stress are delayed by at least 7 days. Also, scale cortisol content is spatially heterogeneous across the body surface of goldfish. Overall, since high and sustained circulating cortisol levels are needed to influence scale cortisol content and the rates of cortisol accumulation and clearance are much slower in scales than in plasma, our results show that scales can provide an integrated measure of cortisol production and serve as a chronic stress indicator.

12.
J Fish Biol ; 95(4): 1013-1021, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31260561

RESUMO

We hypothesised that the exploration tendency of the amphibious mangrove rivulus Kryptolebias marmoratus would be inhibited in the terrestrial environment because of constraints on terrestrial locomotion or orientation. Using a novel object test, we showed that the fish explored objects in the aquatic but not the terrestrial environment, supporting the existence of constraints on terrestrial exploration. In further tests of the effects of extrinsic factors on terrestrial movement between aquatic refuges, shallow water depth simulating desiccation risk and the presence of a conspecific simulating intraspecific competition increased emersion outside of refuges, while high water salinity had no effect. These extrinsic factors had little effect on terrestrial movement between different aquatic refuges, except possibly for the lowest water depth tested. A significant association observed between emersion activity and movement between aquatic refuges suggested that terrestrial movement in K. marmoratus might depend on the tendency of individuals to emerse.


Assuntos
Comportamento Animal , Ciprinodontiformes/fisiologia , Animais , Atividade Motora
13.
Front Neurosci ; 13: 1407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31992968

RESUMO

A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.

14.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404883

RESUMO

Variation in spatial complexity and foraging requirements between habitats can impose different cognitive demands on animals that may influence brain size. However, the relationship between ecologically related cognitive performance and brain size is not well established. We test whether variation in relative brain size and brain region size is associated with habitat use within a population of pumpkinseed sunfish composed of different ecotypes that inhabit either the structurally complex shoreline littoral habitat or simpler open-water pelagic habitat. Sunfish using the littoral habitat have on average 8.3% larger brains than those using the pelagic habitat. We found little difference in the proportional sizes of five brain regions between ecotypes. The results suggest that cognitive demands on sunfish may be reduced in the pelagic habitat given no habitat-specific differences in body condition. They also suggest that either a short divergence time or physiological processes may constrain changes to concerted, global modifications of brain size between sunfish ecotypes.


Assuntos
Adaptação Biológica , Encéfalo/anatomia & histologia , Ecótipo , Perciformes/anatomia & histologia , Animais , Ecossistema , Tamanho do Órgão
15.
Brain Behav Evol ; 90(4): 276-288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130952

RESUMO

The habenular complex and its associated axonal pathways are often thought of as phylogenetically conserved features of the brain among vertebrates despite the fact that detailed studies of this brain region are limited to a few species. Here, the gross morphology and axonal projection pattern of the habenular complex of an anuran amphibian, the fire-bellied toad Bombina orientalis, was studied to allow comparison with the situation in other vertebrates. Axonal pathways were traced using biocytin applications in dissected brain preparations. The results show that the rostral part of the left dorsal nucleus is enlarged in this species, while the rostral ventral nucleus and caudal parts do not show left-right size differences. Biocytin applications revealed widespread axonal projections of the habenular complex to the posterior tuberculum/dorsal hypothalamic region, ventral tegmentum, interpeduncular nucleus (IPN), and raphe median. Additionally, axons targeting the lateral hypothalamus originated from the ventral habenular nuclei. The results also suggest an asymmetrical pattern of projection to the IPN in the rostral part of the habenular complex, where the left habenula preferentially targeted the dorsal IPN while the right habenula preferentially targeted the ventral IPN. The caudal habenular nuclei showed no asymmetry of projections as both sides targeted the ventral IPN. Comparison of the habenular complex axonal connectivity across vertebrates argues against strong phylogenetic conservation of the axonal projection patterns of different habenular nuclei.


Assuntos
Anuros/anatomia & histologia , Anuros/fisiologia , Habenula/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Habenula/anatomia & histologia , Lisina/análogos & derivados , Lisina/metabolismo , Mesencéfalo/anatomia & histologia , Neurônios , Filogenia , Tegmento Mesencefálico/anatomia & histologia
16.
Ecol Lett ; 19(8): 948-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27339557

RESUMO

Predators tend to be large and mobile, enabling them to forage in spatially distinct food web compartments (e.g. littoral and pelagic aquatic macrohabitats). This feature can stabilise ecosystems when predators are capable of rapid behavioural response to changing resource conditions in distinct habitat compartments. However, what provides this ability to respond behaviourally has not been quantified. We hypothesised that predators require increased cognitive abilities to occupy their position in a food web, which puts pressure to increase brain size. Consistent with food web theory, we found that fish relative brain size increased with increased ability to forage across macrohabitats and increased relative trophic positions in a lacustrine food web, indicating that larger brains may afford the cognitive capacity to exploit various habitats flexibly, thus contributing to the stability of whole food webs.


Assuntos
Cognição/fisiologia , Peixes/anatomia & histologia , Cadeia Alimentar , Comportamento Predatório/fisiologia , Animais , Peixes/fisiologia , Tamanho do Órgão/fisiologia
17.
Brain Behav Evol ; 87(2): 128-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27216606

RESUMO

Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology.


Assuntos
Encéfalo/anatomia & histologia , Ecossistema , Peixes/anatomia & histologia , Cadeia Alimentar , Lagos , Animais , Ontário , Especificidade da Espécie
18.
Biodivers Data J ; (3): e6313, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379469

RESUMO

BACKGROUND: Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. NEW INFORMATION: The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory - it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011-2020.

19.
Behav Processes ; 103: 291-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480408

RESUMO

Conditioned taste avoidance (CTA) helps prevent consumption of dangerous foods. It results from the pairing of a novel food or taste with subsequent aversive consequences, such as illness. Previous studies of CTA in amphibians have produced conflicting results. Establishing the presence or absence of CTA in amphibians is needed to clarify the phylogeny of this phenomenon. This experiment evaluated the ability of the fire-bellied toad Bombina orientalis to avoid a novel food item previously paired with subsequent illness or unpalatable taste. Mealworms, a novel prey item for the subjects, were coated with a solution of either 2% HCl or 3% CuSO4 to make them unpalatable or nauseating, respectively. Lengthy and obvious signs of illness such as face wiping and retching followed the consumption of mealworms coated with CuSO4, whereas consumption of mealworms coated with HCl only resulted in distinct and short lived aversive reactions at the time of consumption. The results showed that consumption of mealworms tainted with CuSO4, but not HCl, rapidly induced prey avoidance. This response was specific to mealworms; the usual food (crickets) was not avoided. The results suggest that CTA following illness is not restricted to amniote vertebrates.


Assuntos
Anuros/fisiologia , Aprendizagem da Esquiva/fisiologia , Comportamento de Doença/fisiologia , Comportamento Predatório/fisiologia , Animais , Sulfato de Cobre/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Gryllidae , Ácido Clorídrico/farmacologia , Paladar/fisiologia
20.
Brain Struct Funct ; 219(6): 1955-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23881295

RESUMO

The cerebral hemispheres of amphibians display paired dorsal and ventral striatum (commonly referred to as striatum proper and nucleus accumbens, respectively). Each striatal region is proposed to be closely associated with a pallidal structure located caudal to it to form a striatopallidal system. In the present study, afferents to the dorsal and ventral striatopallidal systems of the fire-bellied toad (Bombina orientalis) were investigated using the neuronal tracer biocytin. A quantitative analysis of the topographical distribution of afferent neurons from the thalamus and posterior tubercle/ventral tegmentum was emphasised. The main results show that inputs to the two striatopallidal systems originate from distinct dorsal thalamic nuclei, with dorsal and ventral striatopallidal afferent neurons favouring strongly the lateral/central and anterior thalamic nuclei, respectively. However, afferent neuron distribution in the dorsal thalamus does not differ in the rostrocaudal axis of the brain. Afferent neurons from the posterior tubercle and ventral tegmentum, on the other hand, are organised topographically along the rostrocaudal axis. About 85 % of afferent neurons to the dorsal striatopallidal system are located rostrally in the posterior tubercle, while 75 % of afferent neurons to the ventral striatopallidal system are found more caudally in the ventral tegmentum. This difference is statistically significant and confirms the presence of distinct mesostriatal pathways in an amphibian. These findings demonstrate that an amphibian brain displays striatopallidal systems integrating parallel streams of sensory information potentially under the influence of distinct ascending mesostriatal pathways.


Assuntos
Globo Pálido/citologia , Neostriado/citologia , Neurônios Aferentes/citologia , Estriado Ventral/citologia , Vias Aferentes/citologia , Animais , Anuros , Encéfalo/citologia , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...